Abstract
The rapidly changing marine environmental chemistry associated with growing industrialisation, urban population expansion, and the unabated rise in atmospheric CO2 necessitates monitoring. Traditional approaches using metres, dataloggers, and buoys to monitor marine acidification have limited application in coastal oceans and intertidal zones subjected to direct wave action. The present study trialled a system to biomonitor coastal acidification (carbonate ion and pH) based on the dissolution of living gastropod shells. We extended on an approach that ranked shell erosion (SER) in Nerita chamaeleon (Nc) in environments where such erosion was found to correlate with exposure to acidified water. We assessed the spatial scale at which the Nc-SER marker could detect change in acidification along rocky shores, and whether snail body size affected this marker. We found that proportional and unique Nc-SERs not only varied between acidified and non-acidified reference shores at a coarse spatial scale (10km), but also in predictable ways at fine scales (metres), vertically and horizontally within a shore. Differences between acidified and reference shores in the relationship for snail size and Nc-SER were accentuated by less weathered shells at reference localities, highlighting the value of including small, juvenile snails in monitoring protocols. Gastropod shells are shown to be useful for assessing point sources of acidification and the spatial area of affected coastal zones. This cost-effective and easy-to-use approach (potentially even by citizen-scientists) offers an early warning system of acidification of rocky shore ecosystems, where the deployment of instruments is precluded.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have