Abstract
The ELI-NP (Extreme Light Intensity—Nuclear Physics) project, developed at the Horia Hulubei National Institute for RD in Physics and Nuclear Engineering (IFIN-HH), has included one component dedicated to the study of interactions between brilliant gamma-ray and matter, with applications in nuclear physics and the science of materials. The paper is focused on the interaction chamber, an important part of the facility which hosts the experiment’s samples. The interaction chamber is endowed with a mobile sample support (holder), which automatically tracks the γ-ray beam. The γ-ray radiation source presents a slight variation of the direction of the emitted radiation in time. The built system ensures the permanent collimation between the γ-ray beam and the sample that is being investigated. This is done with two electric motors, which have a symmetrical movement with respect to the center of a rectangle. The specific measures taken by the design and implementation that permit to reach performances of tracking system are emphasized in the paper. The methodology considers the relative displacement between the detectors with which the laboratory is equipped and the absolute position in space of the sample boundary. The control of this motion is designed to respect the symmetry of the system. Both facets of the project (hardware and software) are detailed, emphasizing the way in which the designers ensured compliance with the system of real-time operation conditions of the tracking and monitoring system.
Highlights
The γ-ray beam system under construction at ELI-NP provides a very bright photon beam with unprecedented bandwidth and tunability
The ELI-NP (Extreme Light Intensity—Nuclear Physics) project, developed at the Horia Hulubei National Institute for RD in Physics and Nuclear Engineering (IFIN-HH), has included one component dedicated to the study of interactions between brilliant gamma-ray and matter, with applications in nuclear physics and the science of materials
This is done with two electric motors, which have a symmetrical movement with respect to the center of a rectangle
Summary
The γ-ray beam system under construction at ELI-NP provides a very bright photon beam with unprecedented bandwidth and tunability. Tor (4), the optical projection system of the scintillator for the digital sCMOS camera, jointly mounted on the external wall of the interaction camera, as well as the image processing (computer) and control elements (drivers and linear stages) of the actuators related to the sample holder.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.