Abstract

A coastal wave buoy was lost near Jeju Island, Korea, in late July 2014 and found at Cape Mendocino, USA, in April 2020. The buoy’s journey was simulated with a Lagrangian particle tracking model using surface ocean currents and wind data at 10 m above sea level. Experiments were conducted with windage values of 0, 2, and 4%. Particles were released along the southern coast of Jeju Island from 31 July to 8 August 2014. When the windage was 0 or 2%, most particles reached the northwest Pacific via the East/Japan Sea or East China Sea, respectively. With 4% windage, very few particles entered the North Pacific. Under 0% windage, particles accumulated in the Great Pacific Garbage Patch (GPGP) and never reached the USA. Under 2%, particles were able to escape the GPGP and started to reach the USA coast 2 years and 7 months after the release. The trajectory of the buoy was deduced from the trajectories of particles with a similar travel time. The buoy likely moved to East China and then to the subtropical convergence zone, where it must have circulated for approximately 2 years before being pushed toward Cape Mendocino by the intensified winter westerlies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call