Abstract

Etchable track formation in poly-allyl-diglycol carbonate (commercially known as CR-39) track detectors is a process directly related to density of damage produced along the charged particle path; it requires knowledge of the variation of bulk etch rate V b and track etch rate V t as a function of the initial particle energy and etching time. In this paper, the track etch parameters have been experimentally measured in CR-39 detectors irradiated with proton and alpha particles in the energy ranges 0.5–2.5 MeV and 1–5.8 MeV, respectively. Detectors were chemically etched in a hot hydroxide potassium solution for periods ranging from 1 to 32 h. The dependence of track diameters on the energy values, the correlation between the maximum track diameter and the Bragg peak and the variation of the track etch rate V t as a function of the incident particle energy for different etching times are presented and discussed. Critical values of detection angles and optimal energies of the incident protons on the CR-39 have been deduced. The present results are compared with those given in recently published works.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call