Abstract
This paper presents a new method to both track and segment multiple objects in videos using min-cut/max-flow optimizations. We introduce objective functions that combine low-level pixel wise measures (color, motion), high-level observations obtained via an independent detection module, motion prediction, and contrast-sensitive contextual regularization. One novelty is that external observations are used without adding any association step. The observations are image regions (pixel sets) that can be provided by any kind of detector. The minimization of appropriate cost functions simultaneously allows detection-before-track tracking (track-to-observation assignment and automatic initialization of new tracks) and segmentation of tracked objects. When several tracked objects get mixed up by the detection module (e.g., a single foreground detection mask is obtained for several objects close to each other), a second stage of minimization allows the proper tracking and segmentation of these individual entities despite the confusion of the external detection module.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.