Abstract
Understanding the transition from the Asymptotic Giant Branch (AGB) to the Planetary Nebula (PN) phase is crucial for advancing our knowledge of galaxy evolution and the chemical enrichment of the universe. In this manuscript, we analyze 137 carbon-rich, evolved low- and intermediate-mass stars (LIMSs) from both the Magellanic Clouds (MCs) and the Milky Way (MW). We focus on AGB, post-AGB, and PN sources, tracing the evolution of their emission through spectral energy distribution (SED) modeling. Consistent with previous studies, we observe that more evolved LIMSs exhibit cooler dust temperatures and lower optical depths. Amorphous carbon (amC) is the dominant dust species in all the evolutionary stages examined in this work, while silicon carbide (SiC) accounts for 5–30% of the total dust content. Additionally, we analyze color–color diagrams (CCDs) in the infrared using data from IRAC, WISE, and 2MASS, uncovering significant evolutionary trends in LIMS emission. AGB stars evolve from bluer to redder colors as they produce increasing amounts of dust. Post-AGB and PN sources are clearly differentiated from AGB stars, reflecting shifts in both effective stellar and dust temperatures as the stars transition through these evolutionary phases.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have