Abstract
Climate change in the Arctic is expected to have drastic effects on marine primary production sources by shifting ice-associated primary production to an overall greater contribution from pelagic primary production. This shift could influence the timing, amount, and quality of algal material reaching the benthos. We determined the contribution of sea ice particulate organic matter (iPOM) to benthic-feeding invertebrates by examining concentrations and stable carbon isotope values (expressed as δ13C values) of three fatty acids (FAs) prominent in diatoms: 16:4(n-1), 16:1(n-7), and 20:5(n-3). Our underlying assumption was that diatoms make up the majority in sea ice algal communities compared with phytoplankton communities. According to the FA concentrations, subsurface deposit feeders consumed the most iPOM and suspension feeders the least. Conversely, there were little differences in δ13C values of FAs between deposit and suspension feeders, but the higher δ13C values of 16:1(n-7) in omnivores indicated greater consumption of iPOM. We suggest that omnivores accumulate the ice algal FA biomarker from their benthic prey, which in turn may feed on ice algae from a deposited sediment pool. The dissimilar results between FA concentrations and isotope values suggest that the FAs used here may not be sufficiently source specific and that other unaccounted production sources, such as bacteria, may also contribute to the FA pool. We propose that FA isotope values are a more indicative biomarker than FA concentrations, with a further need for more specific ice algal biomarkers to resolve the question of ice algal contributions to the Arctic benthic food web.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.