Abstract

We studied the regenerated cartilage in tracheal defect repair and compared the bio-materials used versus native trachea using basic fibroblast growth factor (bFGF)-impregnated gelatin hydrogel. A full-thickness anterior defect was created in the cervical trachea of 15 experimental rabbits. The defect was implanted with a hybrid scaffold of poly(lactic-co-glycolic acid) (PLGA) knitted mesh and collagen sponge. The implanted trachea was reinforced with a copolymer stent of polycaprolactone and poly(lactic acid) coarse fiber mesh. A gelatin hydrogel was used for providing a sustained release of bFGF. The reconstructed tracheas were divided into three groups with wrapped materials; without gelatin hydrogel (control group, n = 5), a gelatin hydrogel with saline (gelatin group, n = 5), and a gelatin hydrogel with 100 microg of bFGF (bFGF group, n = 5). One of the five rabbits in each group at 1 month after operation, one at 3 months, and three at 6 months were killed and the engineered tracheas were evaluated histologically. Biomechanical properties were evaluated on samples at 6 months postoperatively. The rigid support in the defect portion was maintained during 6 months postoperatively. The newly regenerated cartilages were recognized between the host cartilage stumps at 3 months postoperatively in the bFGF group, and limited new cartilage growth and epithelialization were observed at 6 months postoperatively. The experiment shows that using bFGF, better mechanical strength was obtained but with poor cartilage growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call