Abstract

Anastomotic leakage is a common complication of intestinal surgery. In an attempt to resolve this issue, a promising approach is enhancement of anastomotic wound healing. A method for controlled release of basic fibroblast growth factor (bFGF) using a gelatin hydrogel was developed with the objective of investigating the effects of this technology on intestinal anastomotic healing. The small intestine of Wistar rats was cut, end-to-end anastomosis was performed and rats were divided into three groups: bFGF group (anastomosis wrapped with a hydrogel sheet incorporating bFGF), PBS group (wrapped with a sheet incorporating phosphate-buffered saline solution) and NT group (no additional treatment). Degradation profiles of gelatin hydrogels in vivo and histological examinations were performed using gelatin hydrogels with various water contents and bFGF concentrations to define the optimal bFGF dose and hydrogel biodegradability. The anastomotic wound healing process was evaluated by histological examinations, adhesion-related score and bursting pressure. The optimal water content of the hydrogel and bFGF dose was determined as 96% and 30 µg per sheet, respectively. Application of bFGF significantly enhanced neovascularization, fibroblast infiltration and collagen production around the anastomotic site when compared with the other groups. Bursting pressure was significantly increased in the bFGF group. No significant difference was observed in the adhesion-related score among the groups and no anastomotic obstruction and leakage were observed. Therefore controlled release of bFGF enhanced healing of an intestinal anastomosis during the early postoperative period and is a promising method to suppress anastomotic leakage. Copyright © 2013 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call