Abstract
The effective diffusion coefficients in mine ventilation-flows had been obtained as 4 to 200 m2/s by matching the measured concentration-time curves with the advection-diffusion equation. The turbulent diffusion coefficients in the simple airways have good agreement with the equation proposed by Taylor. However, for complex airways in operating mines, the evaluated effective diffusion coefficients in the mines show higher values than that calculated by the Taylor’s equation. A numerical simulation model using with movements of discrete particles dosed into ventilation flows has been developed to simulate diffusion phenomena of gas or dust in mine airways. Numerical simulations had been conducted on distribution of tracers in single airways with ordinary profiles of mean velocity, velocity fluctuations and Reynolds stress. As one of results, long band of diffused particles is obtained at the single airway of 600 m in length, and large effective diffusion coefficient is evaluated as 20 m2/s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.