Abstract

Modelling trace metal dynamics is essential in an integrated modelling framework as trace metals have the potential to be fatal, even when present at low concentrations. Since the degree of bioavailability of a metal depends on its presence in the dissolved phase, it is necessary to keep track of both the dissolved and particulate phase of metals. In general, the well-known partitioning coefficient approach is widely used for trace metal speciation. As such, we applied a parametric approach to relate the partitioning coefficient to several environmental variables. These environmental variables are made available by a suite of physically based models (a hydrologic and diffuse pollution model, Soil and Water Assessment Tool (SWAT); a hydraulic model, Storm Water Management Model (SWMM); a stream temperature model; an in-stream water quality conversion model; and a sediment transport model) integrated using the Open Modelling Interface (OpenMI). For trace metal speciation, two regression techniques, (a) the multi-linear regression (MLR) and (b) the principle component regression (PCR), were used. It is then tested in the Zenne river basin, Belgium, to simulate four trace metals (copper, cadmium, zinc and lead) dynamics. We demonstrated the usefulness of the OpenMI platform to link different model components for integrated trace metal transport modelling of a complex river basin. It was found that the integrated model simulated different metals with ‘satisfactory’ accuracy. The MLR- and PCR-based model results were also comparable. From a management perspective, the river is not heavily polluted except for the level of dissolved zinc. We believe that the availability of such a model will allow for a better understanding of trace metal dynamics, which could be utilized to improve the present condition of the river.

Highlights

  • The European Union (EU) Water Framework Directive (WFD) established in 2000 [1] advocated the requirement of a good ecological status for all surface waters in all member states by 2015

  • We present simulated and observed total, dissolved and particulate metal concentrations at the most downstream stations—Eppegem (Figure 5)

  • We demonstrated the usefulness of the Open Modelling Interface (OpenMI) platform to link different model components for integrated trace metal transport modelling

Read more

Summary

Introduction

The European Union (EU) Water Framework Directive (WFD) established in 2000 [1] advocated the requirement of a good ecological status for all surface waters in all member states by 2015. In response to the WFD’s call for enhancing the status of aquatic ecosystems and reducing pollution from priority substances, large investments were made for the management of the wastewaters draining to the Zenne River, Belgium, resulting in an increase of the quality of the river [3]. Despite these investments, the river still receives high loads of pollutants, especially considering its low discharge. It is in this context that an interuniversity, multidisciplinary research project titled, ‘Good Ecological Status of the river Zenne’

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.