Abstract
This work focused on trace metal behavior and removal in a fabric filter or in a humidification reactor during the cofiring of sawdust and refuse-derived fuels (RDFs) in a pilot-scale bubbling fluidized bed (BFB) boiler. Trace metal emissions measurements before and after the fabric filter revealed that removal efficiency in the fabric filter was in the range of 80–100%, and that the European Union (EU) Directive on Incineration of Waste restrictions for trace metal emissions are easily achieved even if addition of RDFs substantially increases the concentration of trace metals in fuel blends. Limestone injection enhanced the removal of As and Se but had no noticeable effect on the removal of other trace metals. Extensive formation of HgCl2 and condensation on fly ash particles during sawdust plus 40% RDF cofiring resulted in a 92% Hg removal efficiency in the fabric filter. Limestone injection had no effect on the Hg removal in the fabric filter but decreased the Hg removal in a humidification reactor from 40 to 28%. Results of the bed material and fly ash analysis suggested capture of Cu, Pb, Mn, Ni, and Zn in the bed material but also suggested that these metals may be released from the bed if the fuel characteristics or process conditions are changed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have