Abstract

Pptv levels of BrO radical have been detected around 338.5-nm wavelength probing a rotationally structured A←X (7,0) electronic transition using mode-locked cavity-enhanced spectroscopy (ML-CEAS). The spectrometer is composed by a widely tunable, broadband frequency-doubled Ti:Sa mode-locked frequency comb laser injected into a high-finesse optical cavity and a high-resolution spectrometer based on a high-order diffraction grating and a high-sensitivity back-thinned CCD camera. A typical minimum detectable absorption coefficient of 1×10−9 cm−1 in 30 s of acquisition has been achieved, leading to a detection limit of 1.7 parts per trillion of BrO at atmospheric pressure. The compact and robust ultrasensitive broadband UV spectrometer is intended to be employed for in situ long-term direct measurements of BrO and other halogenated radicals, thus responding to the lack of analytical techniques to monitor the concentrations of such highly chemically reactive species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call