Abstract
We demonstrate a substantial enhancement of gas Raman scattering using a bidirectional multi-pass cavity CERS system, which incorporates a polarization beam-splitting optical path. The system design allows the laser light to traverse the multi-pass cavity for four specific trips, satisfying the need for quick detection of various gas components. Our gas detection experiments using multi-pass cavities with different times of reflection indicate that the addition of polarization beam-splitting optical path gives 1.5 to 1.68 times enhancement of Raman signal compared with that of the system without polarization beam-splitting. For the detection of CH4, a limit of detection of 1.66 ppm was achieved with our system using a multi-pass cell with 41 times of reflection and an integration time of 30s. Our proposed design, which integrates a bidirectional multi-pass cavity with polarization beam-splitting optical path, gives an economical multicomponent gas detection system and a valuable tool for guiding the design and precise alignment of these cavities. This system shows significant promise for applications in e.g. human breath and environmental monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.