Abstract
The Pliocene and Quaternary Patagonian alkali basalts of southernmost South America can be divided into two groups. The “cratonic” basalts erupted in areas of Cenozoic plateau volcanism and continental sedimentation and show considerable variation in 87Sr/86Sr (0.70316 to 0.70512), 143Nd/144Nd (ɛNd) and 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios (18.26 to 19.38, 15.53 to 15.68, and 38.30 to 39.23, respectively). These isotopic values are within the range of oceanic island basalts, as are the Ba/La, Ba/Nb, La/Nb, K/Rb, and Cs/Rb ratios of the “cratonic” basalts. In contrast, the “transitional” basalts, erupted along the western edge of the outcrop belt of the Pliocene and Quaternary plateau lavas in areas that were the locus of earlier Cenozoic Andean orogenic arc colcanism, have a much more restricted range of isotopic composition which can be approximated by 87Sr/86Sr=0.7039±0.0004, ɛNd, 206Pb/204Pb=18.60±0.08, 207Pb/204Pb=15.60±0.01, and 208Pb/204Pb=38.50±0.10. These isotopic values are similar to those of Andean orogenic are basalts and, compared to the “cratonic” basalts, are displaced to higher 87Sr/86Sr at a given 143Nd/144Nd and to higher 207Pb/204Pb at a given 208Pb/204Pb. The “transitional” basalts also have Ba/La, Ba/Nb, La/Nb, and Cs/Rb ratios higher than the “cratonic” and oceanic island basalts, although not as high as Andean orogenic are basalts. In contrast to the radiogenic isotopes, δ18O values for both groups of the Patagonian alkali basalts are indistinguishable and are more restricted than the range reported for Andean orogenic are basalts. Whole rock δ18O values calculated from mineral separates for both groups range from 5.3 to 6.5, while measured whole rock δ18O values range from 5.1 to 7.8. The trace element and isotopic data suggest that decreasing degrees of partial melting in association with lessened significance of subducted slabderived components are fundamental factors in the west to east transition from arc to back-arc volcanism in southern South America. The “cratonic” basalts do not contain the slab-derived components that impart the higher Ba/La, Ba/Nb, La/Nb, Cs/Rb, 87Sr/86Sr at a given 143Nd/144Nd, 207Pb/204Pb at a given 208Pb/204Pb, and δ18O to Andean orogenic arc basalts. Instead, these basalts are formed by relatively low degrees of partial melting of heterogeneous lower continental lithosphere and/or asthenosphere, probably due to thermal and mechanical pertubation of the mantle in response to subduction of oceanic lithosphere below the western margin of the continent. The “transitional” basalts do contain components added to their source region by either (1) active input of slab-derived components in amounts smaller than the contribution to the mantle below the arc and/or with lower Ba/La, Ba/Nb, La/Nb, and Cs/Rb ratios than below the arc due to progressive downdip dehydration of the subducted slab; or (2) subarc source region contamination processes which affected the mantle source of the “transitional” basalts earlier in the Cenozoic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.