Abstract

As an attractive semiconductor photocatalyst, (CuInS2)x-(ZnS)y has been intensively studied in photocatalysis, due to its unique layered structure and stability. Here, we synthesized a series of CuxIn0.25ZnSy photocatalysts with different trace Cu+-dominated ratios. The results show that doping with Cu+ ions leads to an increase in the valence state of In and the formation of a distorted S structure, simultaneously inducing a decrease in the semiconductor bandgap. When the doping amount of Cu+ ions is 0.04 atomic ratio to Zn, the optimized Cu0.04In0.25ZnSy photocatalyst with a bandgap of 2.16 eV shows the highest catalytic hydrogen evolution activity (191.4 μmol.h−1). Subsequently, among the common cocatalysts, Rh loaded Cu0.04In0.25ZnSy gives the highest activity of 1189.8 μmol·h−1, corresponding to an apparent quantum efficiency of 49.11 % at 420 nm. Moreover, the internal mechanism of photogenerated carrier transfer between semiconductors and different cocatalysts is analyzed by the band bending phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.