Abstract
Natural and synthetic corticosteroids (CSs) are a class of steroid hormones which could potentially disturb the corticosteroid signaling pathways in wildlife and humans. In this study, a sensitive and robust analytical method using solid phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for simultaneous analysis of sub-ng/L concentrations of 26 CSs in highly complex natural water matrices. The method performance was validated for WWTP influent, effluent, surface water and finished drinking water. Low practical quantification levels (PQLs) were achieved as 0.008–0.16 ng/L in finished drinking water, 0.019–0.50 ng/L in surface water, 0.047–1.5 ng/L in WWTP effluent, and 0.10–3.1 ng/L in WWTP influent, respectively, with the recoveries ranging from 70% to 130%. The cleanup performance and matrix interferences were also evaluated. This method was then applied to the analysis of target CSs in WWTP influent and effluent samples collected from a local WWTP, as well as surface water downstream of the WWTP outfall, detecting an average summed CS concentration of 744 ng/L in influent, 23.4 ng/L in effluent and 10.9 ng/L in surface water. Four synthetic CSs (triamcinolone acetonide, fluocinolone acetonide, clobetasol propionate, and fluticasone propionate) were found poorly removed in the WWTP. The developed method provides a tool to obtain occurrence data of corticosteroids in environmental waters, which will permit assessing their risk to environmental organisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.