Abstract
Quantification of drugs residues in wastewaters of different sources could help better understand contamination pathways, eventually leading to effluent regulation. However, limited data are available for hospital-derived wastewaters. Here, an analytical method based on automated on-line solid-phase extraction liquid chromatography tandem mass spectrometry (on-line SPE – UPLC-MS/MS) was developed for the quantification of multi-class pharmaceuticals in wastewaters. Filtrate phase and suspended solids (SPM) were both considered to evaluate the distribution of targeted analytes. Experimental design optimization involved testing different chromatographic columns, on-line SPE columns, and loading conditions for the filtrate phase, and different organic solvents and cleanup strategies for suspended solids. The selected methods were validated with suitable limits of detection, recovery, accuracy, and precision. A total of 30 hospital effluents and 6 wastewater treatment plants were sampled to evaluate concentrations in real field-collected samples. Certain pharmaceuticals were quantified at high levels such as caffeine at 670,000 ng/L in hospital wastewaters and hydroxyibuprofen at 49,000 ng/L in WWTP influents. SPM samples also had high contaminant concentrations such as ibuprofen at 31,000 ng/g in hospital effluents, fluoxetine at 529 ng/g in WWTP influents or clarithromycin at 295 ng/g in WWTP effluents. Distribution coefficients (Kd) and particle-associated fractions (Φ) indicate that pharmaceuticals tend to have better affinity to suspended solids in hospital wastewater than in municipal wastewaters. The results also bring arguments for at source treatment of these specific effluents before their introduction into urban wastewater systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.