Abstract

Background: Therapeutic peptide prediction is critical for drug development and therapy. Researchers have been studying this essential task, developing several computational methods to identify different therapeutic peptide types. Objective: Most predictors are the specific methods for certain peptides. Currently, developing methods to predict the presence of multiple peptides remains a challenging problem. Moreover, it is still challenging to combine different features to make the therapeutic prediction. Method: In this paper, we proposed a new ensemble method TP-MV for general therapeutic peptide recognition. TP-MV is developed using the stacking framework in conjunction with the KNN, SVM, ET, RF, and XGB. Then TP-MV constructs a multi-view learning model as meta-classifiers to extract the discriminative feature for different peptides. Results: In the experiment, the proposed method outperforms the other existing methods on the benchmark datasets, indicating that the proposed method has the ability to predict multiple therapeutic peptides simultaneously. Conclusion: The TP-MV is a useful tool for predicting therapeutic peptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.