Abstract

Therapeutic peptide prediction is important for the discovery of efficient therapeutic peptides and drug development. Researchers have developed several computational methods to identify different therapeutic peptide types. However, these computational methods focus on identifying some specific types of therapeutic peptides, failing to predict the comprehensive types of therapeutic peptides. Moreover, it is still challenging to utilize different properties to predict the therapeutic peptides. In this study, an adaptive multi-view based on the tensor learning framework TPpred-ATMV is proposed for predicting different types of therapeutic peptides. TPpred-ATMV constructs the class and probability information based on various sequence features. We constructed the latent subspace among the multi-view features and constructed an auto-weighted multi-view tensor learning model to utilize the high correlation based on the multi-view features. Experimental results showed that the TPpred-ATMV is better than or highly comparable with the other state-of-the-art methods for predicting eight types of therapeutic peptides. The code of TPpred-ATMV is accessed at: https://github.com/cokeyk/TPpred-ATMV. Supplementary data are available at Bioinformatics online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.