Abstract

The virulence regulator ToxR initiates and coordinates gene expression needed by Vibrio cholerae to colonize the small intestine and cause disease. Despite its prominence in V. cholerae virulence, our understanding of the direct ToxR regulon is limited to four genes: toxT, ompT, ompU and ctxA. Here, we determine ToxR’s genome-wide DNA-binding profile and demonstrate that ToxR is a global regulator of both progenitor genome-encoded genes and horizontally acquired islands that encode V. cholerae’s major virulence factors and define pandemic lineages. We show that ToxR shares more than a third of its regulon with the histone-like nucleoid structuring protein H-NS, and antagonizes H-NS binding at shared binding locations. Importantly, we demonstrate that this regulatory interaction is the critical function of ToxR in V. cholerae colonization and biofilm formation. In the absence of H-NS, ToxR is no longer required for V. cholerae to colonize the infant mouse intestine or for robust biofilm formation. We further illustrate a dramatic difference in regulatory scope between ToxR and other prominent virulence regulators, despite similar predicted requirements for DNA binding. Our results suggest that factors in addition to primary DNA structure influence the ability of ToxR to recognize its target promoters.

Highlights

  • Bacteria emerge as pathogens by horizontally acquiring new genetic functions from their environment and neighboring organisms [1,2]

  • The transcription factor ToxR initiates a virulence regulatory cascade required for V. cholerae to express essential host colonization factors and cause disease

  • Genome-wide expression studies suggest that ToxR regulates many genes important for V. cholerae pathogenesis, yet our knowledge of the direct regulon controlled by ToxR is limited to just four genes

Read more

Summary

Introduction

Bacteria emerge as pathogens by horizontally acquiring new genetic functions from their environment and neighboring organisms [1,2]. Benign environmental V. cholerae isolates emerge as pandemic pathogens through the horizontal acquisition and incorporation of genetic elements encoding virulence factors into their progenitor genomes [3,4,5]. The factors gained by the benign progenitor genome include cholera toxin, encoded on the CTX prophage, and the colonization pilus TCP, along with regulators TcpP and ToxT, encoded on the Vibrio Pathogenicity Island 1 (VPI-1) [6,7,8,9]. Current 7th pandemic V. cholerae strains are genetically distinguished from the previous 6th pandemic strains by the acquisition of two new horizontally acquired elements, Vibrio Seventh Pandemic islands 1 and 2 (VSP-1, 2) [5,10]. The acquisition of VSP-1 and 2 are thought to have promoted the emergence and dominance of 7th pandemic strains

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call