Abstract

Organ-on-a-chip technology is considered a next-generation platform in pharmacology and toxicology. Nevertheless, this novel technology still faces several challenges concerning the respective materials which are used for these microfluidic devices. Currently available organ-chips are most often based on polydimethylsiloxane (PDMS). However, this material has strong limitations regarding compound binding. The current study investigated options to reduce compound absorption of the highly toxic nerve agent VX (1000 µmol/L) in a commercially available organ-chip. In addition, surface effects on degradation products of VX were investigated. The alternative polymer cyclic olefin copolymers (CoC) showed significantly less compound absorption compared to PDMS. Furthermore, a coating of PDMS- and CoC-based chips was investigated. The biocompatible polymer polyethyleneimine (PEI) successfully modified PDMS and CoC surfaces and further reduced compound absorption. A previously examined VX concentration after 72 h of 141 ± 10 µmol/L VX could be increased to 442 ± 54 µmol/L. Finally, the respective concentrations of VX and degradation products accounted for > 90% of the initial concentration of 1000 µmol/L VX. The currently described surface modification might be a first step towards the optimization of organ-on-a-chip surfaces, facilitating a better comparability of different studies and results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.