Abstract

Metal organic frameworks based on zirconium nodes (Zr-MOFs) have impressive adsorption capacities, and many can rapidly hydrolyze toxic organophosphorus nerve agents. They could thus potentially replace commonly used adsorbents in respiratory filters. However, current test methodologies are poorly adapted to screen the large number of available MOFs, and data for nerve agent adsorption by MOFs are scarce. This paper presents a miniaturized method for assessing the capacity of Zr-MOFs for dynamic gas phase adsorption and degradation of sarin (GB) into the primary hydrolysis product isopropyl methyl phosphonic acid (IMPA). The method was validated by comparing the dynamic adsorption capacities of activated carbon (AC) and NU-1000 for GB under dry and humid conditions. Under dry conditions, unimpregnated AC had a greater capacity for GB uptake (0.68 ± 0.06 g/g) than pelletized NU-1000 (0.36 ± 0.03 g/g). At 55% relative humidity (RH), the capacity of AC was largely unchanged (0.72 ± 0.10 g/g) but that of NU-1000 increased slightly, to 0.46 ± 0.10 g/g. However, NU-1000 exhibited poor water retention at 55% RH. For both adsorbents, the degree of hydrolysis of GB into IMPA was significantly greater at 55% RH than under dry conditions, but the overall degree of hydrolysis was limited in both cases. Further tests at higher relative humidities are needed to fully evaluate the ability of NU-1000 to degrade GB after adsorption from the gas phase. The proposed experimental setup uses very small amounts of both adsorbent material (20 mg) and toxic agent, making it ideal for assessing new MOFs. However, future methodological challenges are reliable generation of sarin at higher RH and exploring sensitive methods to monitor degradation products from nerve agents in real-time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call