Abstract

We assessed the acute toxicity effects (96h) of silver nanoparticles (Ag NPs) and zinc oxide nanoparticles (ZnO NPs) and chronic (28d) exposure to Ag NPs, including in combination with ZnO NPs. In the chronic studies, we further assessed the toxicokinetics and bioaccumulation of Ag and the resulting histopathological effects in the gill, intestine, and liver of zebrafish. Co-exposures with ZnO NPs reduced the toxicity of Ag NPs for acute (lethality) but enhanced the toxicity effects (tissue histopathology) for chronic exposures. The histological lesions for both NPs exposures in the gill included necrosis and fusion of lamellae, for the intestine necrosis and degeneration, and in the liver, mainly necrosis. The severity of the histological lesions induced by the Ag NPs was related to the amount of accumulated Ag in the zebrafish organs. The Ag accumulation in different organs was higher in the presence of ZnO NPs in the order of the gill > intestine > liver. Depuration kinetics illustrated the lowest half-life for Ag occurred in the gill and for the combined exposure of Ag with ZnO NPs. Our findings illustrate that in addition to tissue, time, and exposure concentration dependencies, the Ag NPs toxicity can also be influenced by the co-exposure to other NPs (here ZnO NPs), emphasizing the need for more combination exposure effects studies for NPs to more fully understand their potential environmental health risks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call