Abstract

The acute nephrotoxicity caused by N-(3,5-dichlorophenyl)succinimide (NDPS) has been shown to be due to a metabolite(s) of the parent compound. This study examined the toxicity of NDPS, its known metabolites N-(3,5-dichlorophenyl)-2-hydroxysuccinimide (NDHS), N-(3,5-dichlorophenyl)-2-hydroxysuccinamic acid (NDHSA), N-(3,5-dichlorophenyl)malonamic acid (DMA), N-(3,5-dichlorophenyl)succinamic acid (NDPSA), and two postulated metabolites N-(3,5-dichlorophenyl)maleamic acid (NDPSA) and N-(3,5-dichlorophenyl)maleimide (NDPM) to suspensions of renal proximal tubules (RPT) prepared from male Fischer 344 rats. Tubule viability and mitochondrial function were not adversely affected by exposure of RPT to either 1 mM NDPS, NDHS, NDHSA, DMA, NDPSA, or NDPMA for 4 h. However, NDPM caused a concentration-(25–100 μM) and time-dependent (0.25–4 h) loss in basal and nystatin-stimulated oxygen consumption and tubule viability. Investigations using isolated renal cortical mitochondria (RCM) showed that NDPM was a potent inhibitor of mitochondrial function. Isolated RCM respiring on pyruvate/malate and exposed to NDPM exhibited a concentration (25–100 μM) dependent decrease in state 3 and state 4 respiration. Inhibition of mitochondrial state 3 respiration by NDPM was mediated through site 1 of the respiratory chain. NDPM did not inhibit cytochrome c-cytochrome oxidase or the electron transport chain. These results indicated that NDPS, its known metabolites, and NDPMA were not directly toxic to rat RPT. However, the postulated metabolite NDPM, was a potent tubule cytotoxicant that inhibited mitochondrial function in isolated RCM and RPT and may produce cell death through this mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.