Abstract
Phototoxic reactions are among the most common skin-related adverse effects induced by drugs. It is believed that the binding of chemicals to melanin biopolymers is a significant factor influencing skin toxicity. The formation of drug-melanin complexes can lead to the accumulation of drugs or their photodegradation products in pigmented cells, potentially affecting phototoxic reactions. Current procedures for assessing the phototoxic potential of drugs are based on tests using immortalized mouse fibroblasts.This study aimed to assess the phototoxic potential of selected drugs that form complexes with melanin (chloroquine, chlorpromazine, doxycycline) using human melanocytes with varying degrees of pigmentation. Parallel research was conducted on human dermal fibroblasts. To induce phototoxicity, cell cultures were irradiated using a sunlight simulator (5 J/cm2 for UVA spectrum). To account for the process of drug accumulation, two experimental models with different incubation times of cells with drugs before irradiation were used. The photo-irritation factor (PIF) was calculated based on NRU and WST-1 screening tests. Additionally, cell viability was examined cytometrically, and analyses of the cell cycle and reduced glutathione levels were conducted.The results indicated that drugs binding with melanin exhibited different levels of cytotoxicity and phototoxicity towards fibroblasts and melanocytes. These observed differences impact the values of PIF, potentially complicating the interpretation of the studies. Additional analyses, such as examining cell subpopulations in the sub-G1 phase and determining the level of reduced glutathione, can enhance the assessment of the phototoxicity of drugs on pigmented cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.