Abstract

Luminescent nanomaterials can provide high-intensity and photostable luminescent signals when used as labeling materials for the determination of trace amounts of analytes. However, a major concern that has arisen is whether the nanomaterials cause toxic effects in living systems. Here, we address this problem through a systematic investigation of the cytotoxicity and genotoxicity of luminescent silica nanoparticles. These nanoparticles are intensely luminescent labeling materials for ultrasensitive determination of biological samples. The investigation of genotoxicity of the nanomaterials was carried out from two perspectives. First, the integrity of the DNA was examined by detecting DNA base modification, strand breaks, and increased DNA repair activity to recover the damage. Second, different sets of cellular DNAs, including nuclear DNA extracts and the whole genomic DNAs, were examined. Furthermore, to fully assess DNA damage by the nanoparticles, isolated genomic DNAs were directly exposed to the nanoparticles. The cytotoxicity of the nanoparticle was detected by measuring the cell proliferation rate, cell death, and death patterns (necrosis and apoptosis) after the nanoparticle treatments. Results show no significant toxic effects due to the luminescent nanoparticles at the molecular and cellular levels below a concentration of 0.1 mg/mL. Our study indicates that the luminescent silica nanoparticle is a promising labeling reagent for various biomedical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.