Abstract

PFAS, or per- and polyfluoroalkyl substances, are a family of man-made chemicals found in a variety of products from non-stick cookware and food wrappers to firefighting foams. PFAS are persistent and widely distributed in the environment, including aquatic environments. In this study we examined the impact of PFAS chemicals on the physiological and behavioral endpoints of Lumbriculus variegatus (i.e., blackworms). Lumbriculus variegatus is a species of freshwater annelid worm that plays key roles in shallow freshwater ecosystems. At an environmentally relevant concentration of 1 μg/L, 12-day aqueous exposure to long chain PFAS, including PFOA, PFOS and PFDA, each markedly slowed the pulse rate of the dorsal blood vessel in L. variegatus, indicating a suppressive effect on blood circulation. The mean pulse rate was reduced from 9.6 beats/minute to 6.2 and 7.0 beats/min in PFOA and PFOS, respectively (P < 0.0001). Further, PFOA, PFOS and PFDA reduced the escape responsiveness of L. variegatus to physical stimulation. The percentage of worms showing normal escape behavior was reduced from 99.0% in control to 90.6% in the PFOS exposed group (P < 0.01). In a chronic (4 week) growth study, exposure to overlying water and sediment spiked with PFOA, PFOS or PFDA reduced the total biomass and the number of worms, indicating a suppressive effect on worm population growth. For instance, PFOA and PFDA reduced the total dry biomass by 26.3% and 28.5%, respectively, compared to the control (P < 0.05). The impact of PFAS on blackworm physiology is accompanied by an increase in lipid peroxidation. The level of malondialdehyde (MDA), an indicator of lipid peroxidation, and catalase, a major antioxidant enzyme, were markedly increased in PFOA, PFOS and PFDA exposed groups. Interestingly, exposure to PFHxA, a short chain PFAS, had no detectable effect on any of the measured endpoints. Our results demonstrate that L. variegatus is highly sensitive to the toxic impact of long chain PFAS chemicals as measured by multiple endpoints including blood circulation, behavior, and population growth. Such toxicity may have a detrimental impact on L. variegatus and the freshwater ecosystems where it resides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call