Abstract

Oxidative damage has been implicated in disorders associated with abnormal copper metabolism and also Cu(2+) overloading states. Besides, mitochondria are one of the most important targets for Cu(2+), an essential redox transition metal, induced hepatotoxicity. In this study, we aimed to investigate the mitochondrial toxicity mechanisms on isolated rat liver mitochondria. Rat liver mitochondria in both in vivo and in vitro experiments were obtained by differential ultracentrifugation and the isolated liver mitochondria were then incubated with different concentrations of Cu(2+). Our results showed that Cu(2+) induced a concentration and time-dependent rise in mitochondrial ROS formation, lipid peroxidation, and mitochondrial membrane potential collapse before mitochondrial swelling ensued. Increased disturbance in oxidative phosphorylation was also shown by decreased ATP concentration and decreased ATP/ADP ratio in Cu(2+)-treated isolated mitochondria. In addition, collapse of mitochondrial membrane potential (MMP), mitochondrial swelling, and release of cytochrome c following of Cu(2+) treatment were well inhibited by pretreatment of mitochondria with CsA and BHT. Our results showed that Cu(2+) could interact with respiratory complexes (I, II, and IV). This suggests that Cu(2+)-induced liver toxicity is the result of metal's disruptive effect on liver hepatocyte mitochondrial respiratory chain that is the obvious cause of Cu(2+)-induced ROS formation, lipid peroxidation, mitochondrial membrane potential decline, and cytochrome c expulsion which start cell death signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call