Abstract

Boron nanoparticles have emerged as promising nanomaterials with a wide array of applications in the biomedical, industrial, and environmental fields. However, the potential impact of these nanoparticles on aquatic organisms is not yet known. In the present study, the comparative impact of boron nitride nanoparticles and its bulk form is investigated on two freshwater algae. For this purpose, the effect on the physiological index, cellular morphology, and biochemistry profiles are examined. In Chlorella vulgaris, nano form of boron nitride is found to reduce the growth more (40%) than its bulk form (with ~ 25% growth reduction) at 50 mgl-1 treatment level. While in case of Coelastrella terrestris, 40% reduction under nano form and 33.33% reduction under bulk form is observed at 100 mgl-1 of boron nitride. Chlorophyll and carotenoid levels were also reduced under nanoparticles compared to the bulk. Proline, lactate dehydrogenase, and malondialdehyde assay were found significantly high under nanoparticle exposure. Additionally, increased catalase and superoxide dismutase enzyme activity under nanoparticle exposure revealed that the antioxidant system was activated in both the algae to eliminate the adverse influence of reactive oxygen species. The shading effect and aggregation of nanoparticles over the surface of algal cells are also important factors in attributing toxicity which are confirmed through the compound, TEM, and SEM micrographs. The study suggests that the nano form is more toxic than the bulk form and toxicity is concentration-dependent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call