Abstract

4-methylimidazole (4MI) is a compound widely used in various industrial and consumer applications. The most important sources of exposure include chemical caramel coloring, ammoniated molasses, dyes and pigments, rube, cleaning and agricultural chemicals. Toxicity attributed to 4MI in foods has recently become a focus of research. Recent studies showed that 4MI induced adverse changes in various target tissues. Brain is known to be a target organ for 4MI-induced toxicity but its cytotoxic mechanisms have not yet been elucidated. In this study, experiments were divided into two parts: (1) using in vivo methodology, doses of 4MI at 100, 200, or 300 mg/kg were administered orally to mice daily for 14 to obtain brain mitochondria; and (2) utilizing in vitro methodology, brain mitochondria were incubated with 4MI at 400, 800, or 1600 μM concentrations. Subsequently, the neurotoxicity of 4MI was assessed using mitochondrial dysfunction tests, including reactive oxygen species (ROS) formation, mitochondrial membrane potential (MMP) collapse, mitochondrial swelling, and cytochrome c release. Our results from both in vivo and in vitro experiments on isolated brain mitochondria showed a significant decrease in complex II activity and also marked elevation in the ROS formation, MMP collapse, mitochondrial swelling, and enhanced release of cytochrome c. Data indicated that 4MI induced neurotoxicity through the impairment of electron transfer chain especially at complex II and elevated ROS formation leading to subsequent oxidative stress events including mitochondrial membrane depolarization, mitochondrial swelling, and release of cytochrome c, which is the starting point of mitochondrial-mediated apoptosis signaling and neurodegeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.