Abstract

Heart failure was subsequently noted in 2-4% of patients on bevacizumab (BEV). Whereas mitochondria play an important role in myocardial tissue homeostasis, deterioration in mitochondrial function will eventually lead to cardiomyocyte cell death and consequently cardiovascular dysfunction. Therefore, the aim of our study is to search the effects of BEV on isolated rat heart mitochondria and cardiomyocytes, and survey the effect of curcumin as a mitochondrial protective and cardioprotective agent. Rat heart mitochondria and cardiomyocytes were isolated from adult rat heart ventricular. By using biochemical and flow cytometry evaluations, the parameters of mitochondrial toxicity including succinate dehydrogenase (SDH) activity, mitochondrial swelling, mitochondrial membrane potential (MMP) collapse, reactive oxygen species (ROS) formation and lipid peroxidation (LP), and cellular assays such as cytotoxicity and MMP collapse were evaluated. Results revealed that BEV (up to 50μg/ml) induced a concentration- and time-dependent rise in mitochondrial ROS formation, MMP collapse, mitochondrial swelling, LP, and inhibition of SDH in rat heart mitochondria. Our results showed that curcumin (10-100μM) significantly ameliorated BEV-induced mitochondrial toxicities. Also, our results in cellular assays confirmed amelioration effect of curcumin against BEV toxicity. These results indicate that the cardiotoxic effects of BEV are associated with mitochondrial dysfunction and ROS formation, which finally ends in MMP collapse and mitochondrial swelling as the "point of no return" in the cascade of events leading to apoptosis. Also, results of this study suggest that probably the combination therapy of BEV and curcumin could decrease mitochondrial effects of this drug.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call