Abstract

In the present study, we have investigated the effects of three (elutriate, polar and non-polar) different soil extraction methods from the Lemna solid waste dumpsite (Calabar, Nigeria) on the biotransformation, antioxidant and cellular defense responses of PLHC-1 cell line. Following a 48 h exposure period to different concentrations of each extract, the PLHC-1 cells were evaluated for enzymatic activities - glutathione peroxidase (Gpx), glutathione reductase (Gr), glutathione S-transferase (Gst), 7-ethoxy-, pentoxy-, and benzyloxyresorufin O-deethylase (EROD, PROD and BROD) and mRNA expressions for catalase (cat), gpx, gst, cyp1a, cyp3a, mammalian target of rapamycin (mtor), nuclear factor erythroid 2–related factor 2 (nrf2) and Kelch-like erythroid cell-derived protein (keap-1). Overall, our results showed parameter-, extract- and concentration-specific increases in transcripts and functional product levels for biotransformation, antioxidant and cellular defense/cytoprotective responses, compared with control. These responses were mostly characterized by a biphasic pattern of effects by either, increasing at low concentration, and thereafter decrease, as the concentration increases or vice versa, depending on the extract type. These observations paralleled soil contaminants (organics and inorganics) burden from the dumpsite. Principal component analysis (PCA) showed that cells treated with the non-polar extract produced more pronounced effects on the measured toxicological responses, compared with the polar and elutriate extracts. Thus, our data highlight peculiar risks to cells exposed to each soil extract, indicating complex and multiple chemical interactions with diverse functional groups that contaminants may have in mixture scenarios. Given the limitations and cost implications of contaminants analysis for the numerous soil- or sediment-bound compounds, we propose that this approach represents an analytical benchmark and endpoints for assessing the risk of complex environmental matrices such as soil and sediments, for ecotoxicological monitoring programs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.