Abstract

BackgroundTropical coral reefs have been recognized for their significant ecological and economical value. However, increasing anthropogenic disturbances have led to progressively declining coral reef ecosystems on a global scale. More recently, several studies implicated UV filters used in sunscreen products to negatively affect corals and possibly contribute to regional trends in coral decline. Following a public debate, bans were implemented on several organic UV filters and sunscreen products in different locations including Hawaii, the U.S. Virgin Islands and Palau. This included banning the widely used oxybenzone and octinoxate, while promoting the use of inorganic filters such as zinc oxide even although their toxicity towards aquatic organisms had been documented previously. The bans of organic UV filters were based on preliminary scientific studies that showed several weaknesses as there is to this point no standardized testing scheme for scleractinian corals. Despite the lack of sound scientific proof, the latter controversial bans have already resulted in the emergence of a new sunscreen market for products claimed to be ‘reef safe’ (or similar). Thus, a market analysis of ‘reef safe’ sunscreen products was conducted to assess relevant environmental safety aspects of approved UV filters, especially for coral reefs. Further, a scientifically sound decision-making process in a regulatory context is proposed.ResultsOur market analysis revealed that about 80% of surveyed sunscreens contained inorganic UV filters and that there is a variety of unregulated claims being used in the marketing of ‘reef safe’ products with ‘reef friendly’ being the most frequently used term. Predominantly, four organic UV filters are used in ‘reef safe’ sunscreens in the absence of the banned filters oxybenzone and octinoxate. Analysis of safe threshold concentrations for marine water retrieved from existing REACH registration dossiers could currently also safeguard corals.ConclusionThere is a substantial discrepancy of treatments of organic versus inorganic UV filters in politics as well as in the ‘reef safe’ sunscreen market, which to this point is not scientifically justified. Thus, a risk-based approach with equal consideration of organic and inorganic UV filters is recommended for future regulatory measures as well as a clear definition and regulation of the ‘reef safe’ terminology.

Highlights

  • Tropical coral reefs have been recognized for their significant ecological and economical value

  • UV filter bans used in sunscreens Following a large public debate in the media about the ramifications of an influx of active sunscreen ingredients on coral reefs, Hawaii was the first state that took regulatory actions to ban the sale of sunscreen products containing BP3 and/or Ethylhexyl methoxycinnamte (EHMC) [33]

  • Our analysis clearly revealed that there are members of both organic (i.e., OCR, EHMC, BP3) and inorganic UV filters (i.e., zinc oxide (ZnO)) that are hazardous to the environment and are classified and labeled according to Globally Harmonized System (GHS) regulations based on available aquatic toxicity data [81]

Read more

Summary

Introduction

Tropical coral reefs have been recognized for their significant ecological and economical value. Tropical hermatypic (reef-building) corals, the actual reef engineers, thrive in oligotrophic waters owing to highly efficient retention and close nutrient cycling by them and other reef organisms [13, 68, 71] This high productivity within these otherwise unproductive “marine deserts” emphasizes the importance of coral reefs as biodiversity hotspots and high value economic resources for human populations living in their proximity [40]. Despite their ecological and economical importance, coral reefs are declining at a historically unprecedented pace due to multiple local and global stressors that are all caused directly or indirectly by anthropogenic activities [4, 5, 42, 47]. Immediate and rapid action to reduce global warming is needed to secure the future of tropical coral reefs [42, 47]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call