Abstract

In Parkinson's disease, abnormal alpha-synuclein (asyn) accumulation leads to the formation of soluble oligomeric species thought to be toxic to cells as well as intraneuronal inclusions. To date, the precise mechanisms leading to aggregation of asyn in the brain is not well-understood. Previous studies in yeast, drosophila, and transgenic mice suggested that a non-A beta component depleted version of human asyn [h-asyn(D70-83)] or human beta-synuclein (h-bsyn), naturally lacking this centrally located hydrophobic region, are less prone to form aggregates invitro and are expected to be less toxic compared to h-asyn invivo, although not all experimental studies unequivocally support the latter view. To address this outstanding issue, we directly compared the neurotoxicity of human asyn against that of h-asyn(D70-83), h-bsyn as well as rat asyn using an adeno-associated viral vector to express these proteins in a dose-response study where the vector load was varied over two orders of magnitude. By quantifying the neurodegeneration of rat substantia nigra dopamine neurons here we show that h-asyn, h-bsyn, and h-asyn(D70-83) display comparable neurotoxicity across the vector doses tested. On the other hand, rat asyn and GFP control vectors displayed a different profile, where no detectable neurodegeneration was seen except at the highest vector titer. Thus, the two main conclusions of our study are that (i) deletion of the central hydrophobic region in h-asyn is not sufficient to alter its neurotoxic properties and (ii) expression of the widely used GFP control protein can cause measurable neurodegeneration at high titers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.