Abstract

To compare the influence of water samples collected from various areas on toxic effect of HNS, we examined the toxic effect of two commonly found HNS: p-chloroaniline and butyl acrylate, on Nannochloropsis oculata cultured in seawater collected from Laizhou bay and Jiaozhou bay (China). The results showed that both p-chloroaniline and butyl acrylate had significant toxic effect on N. oculata cultured in both water samples. P-chloroaniline inhibited its net oxygenation rate and oxygen consumption rate. Butyl acrylate inhibited the net oxygenation rate whereas significantly stimulated oxygen consumption rate. Performance of N. oculata changed between two water samples under same level of p-chloroaniline and butyl acrylate. The net oxygenation rate of N. oculata cultured in the seawater from the Jiaozhou bay increased by 11.60 %, the oxygen consumption rate increased by 26.91 %, algae cell growth decreased by 16.83 %, compared to those from Laizhou bay. The Fv/Fm of N. oculata cultured in Jiaozhou bay was more significantly inhibited at 0.5 and 2.0 mg L−1 p-chloroaniline, while it was significantly inhibited at 5. 0 mg L−1 of butyl acrylate, compared to those from Laizhou bay. Moreover, the toxic effect of both HNS on net oxygenation rate and oxygen consumption rate were significantly attenuated as the concentration increased. The growth inhibition of microalgae cultured in two seawater samples was more evident at 0.5 and 5.0 mg L−1 p-chloroaniline than at 2.0 mg L−1 p-chloroaniline,and the growth inhibition of microalgae cultured in two seawater samples was more evident at 2.0 and 5.0 mg L−1 butyl acrylate than at 0.5 mg L−1 butyl acrylate. These results indicated that toxic effect of p-chloroaniline and butyl acrylate on the growth of N. oculata was influenced by the pollutants in the two water samples. Consequently, a corresponding research on water sample is required in advance to increase accuracy of future ecological risk assessment of HNS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.