Abstract

Human botulism is a severe disease characterized by flaccid paralysis and inhibition of certain gland secretions, notably salivary secretions, caused by inhibition of neurotransmitter release. Naturally acquired botulism occurs in three main forms: food-borne botulism by ingestion of preformed botulinum neurotoxin (BoNT) in food, botulism by intestinal colonization (infant botulism and intestinal toxemia botulism in infants above one year and adults), and wound botulism. A rapid laboratory confirmation of botulism is required for the appropriate management of patients. Detection of BoNT in the patient’s sera is the most direct way to address the diagnosis of botulism. Based on previous published reports, botulinum toxemia was identified in about 70% of food-borne and wound botulism cases, and only in about 28% of infant botulism cases, in which the diagnosis is mainly confirmed from stool sample investigation. The presence of BoNT in serum depends on the BoNT amount ingested with contaminated food or produced locally in the intestine or wound, and the timeframe between serum sampling and disease onset. BoNT levels in patient’s sera are most frequently low, requiring a highly sensitive method of detection. Mouse bioassay is still the most used method of botulism identification from serum samples. However, in vitro methods based on BoNT endopeptidase activity with detection by mass spectrometry or immunoassay have been developed and depending on BoNT type, are more sensitive than the mouse bioassay. These new assays show high specificity for individual BoNT types and allow more accurate differentiation between positive toxin sera from botulism and autoimmune neuropathy patients.

Highlights

  • Botulism is a neurological disease of man and animals which is characterized by flaccid paralysis and inhibition of secretions from glands controled by cholinergic innervation, such as salivary, lachrymal, and sweat glands

  • Albeit all botulinum neurotoxin (BoNT) induce the same toxicological effects resulting in flaccid paralysis, most BoNT types and subtypes share a similar mechanism of action but differ by interaction with distinct receptors and intracellular SNARE targets cutting at different cleavage sites [2,14,15]

  • BoNT detection in serum is the most direct way to confirm a diagnostic of botulism, it is important to know the parameters of botulinum toxaemia such as prevalence of toxaemia according to botulism forms, duration, serum toxin levels, in order to adapt the serum sampling according to the onset of the disease and to interpret possible false negative/positive results

Read more

Summary

Introduction

Botulism is a neurological disease of man and animals which is characterized by flaccid paralysis and inhibition of secretions from glands controled by cholinergic innervation, such as salivary, lachrymal, and sweat glands. No active BoNT responsible for human or animal botulism has been reported in the non-clostridial strains. From 1905 to 1962, 12 reports demonstrated BoNT in the sera of 20 human cases of botulism up to 25 days after the ingestion of contaminated food (reviewed in [44]). BoNT detection in serum is the most direct way to confirm a diagnostic of botulism, it is important to know the parameters of botulinum toxaemia such as prevalence of toxaemia according to botulism forms, duration, serum toxin levels, in order to adapt the serum sampling according to the onset of the disease and to interpret possible false negative/positive results

Detection of BoNT in the Sera of Patients with Food-Borne Botulism
Infant Botulism
Botulism by Intestinal Colonization
Detection of BoNT in the Sera from Patients with Wound Botulism
References ind
Alternative Methods of BoNT Detection in Serum
Method
Findings
Concluding Remarks
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call