Abstract
This work presents a two-step method to reduce CO2 concentration of sweet natural gas product from amine sweetening plant via amine blending (Step 1) followed by minor process modification (Step 2). In Step 1, an industrial natural gas sweetening plant was simulated using Aspen HYSYS and the simulation results were validated against the plant data. Afterwards, different blends of methyl diethanolamine and monoethanolamine (MDEA-MEA) and methyl diethanolamine and diethanolamine (MDEA-DEA) were investigated. Then the optimum amine blend of 28 wt.% MDEA and 10 wt.% MEA was reported. The optimum amine blend achieved a significant reduction in CO2 concentration of sweet natural gas of 99.9% compared to the base case (plant data). In Step 2, two types of amine stream splits, i.e., lean amine stream split and semi-lean amine stream split were studied. The study covered split stream amount, absorber recycle stage, and regenerator stage withdrawal. Both types of stream splits attained a significant reduction in CO2 concentration of sweet natural gas product and amine circulation rate compared to Step 1. However, the semi-lean amine stream split was superior to lean amine split with 69.1% and 63.6% reduction in CO2 concentration of sweet natural gas and lean amine circulation rate, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.