Abstract
We extend some aspects of vacuum string field theory to superstring field theory in Berkovits’ formulation, and we study the star algebra in the fermionic matter sector. After clarifying the structure of the interaction vertex in the operator formalism of Gross and Jevicki, we provide an algebraic construction of the supersliver state in terms of infinite–dimensional matrices. This state is an idempotent string field and solves the matter part of the equation of motion of superstring field theory with a pure ghost BRST operator. We determine the spectrum of eigenvalues and eigenvectors of the infinite–dimensional matrices of Neumann coefficients in the fermionic matter sector. We then analyze coherent states based on the supersliver and use them in order to construct higher–rank projector solutions, as well as to construct closed subalgebras of the star algebra in the fermionic matter sector. Finally, we show that the geometric supersliver is a solution to the superstring field theory equations of motion, including the (super)ghost sector, with the canonical choice of vacuum BRST operator recently proposed by Gaiotto, Rastelli, Sen and Zwiebach.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have