Abstract

Numerical weather prediction models are increasingly employed for providing meteorological data for urban air quality applications. Model resolution, physiographic parameters and surface-layer parameterisations need to be adapted to the requirements of the urban boundary layer. The Lokalmodell of the German Weather Service was triple-nested down to a horizontal grid resolution of 1.1 km, urbanised physiographic parameters were implemented, and an additional anthropogenic heat source was introduced. Results of a sensitivity study for a spring dust episode in Helsinki show a clear urbanisation effect of these measures on temperature, humidity and the partitioning of surface fluxes, leading to an increased Bowen ratio and heat storage and an urban heat island effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call