Abstract

The authors intend to utilize a lower limb exoskeleton for gait assistance in individuals with lower limb neuromuscular deficit. The authors suggest that two foundational elements are required to do so effectively. First, the exoskeleton system must be capable of reliable real-time gait phase detection, in order to determine the nature of gait assistance to provide. Second, in gait phases or circumstances in which the exoskeleton provides minimal assistance, the passive dynamics of the exoskeleton should not hinder the individual (i.e., should have the capability to minimally interfere with gait dynamics). As such, the exoskeleton system should be capable of actively compensating for its passive dynamics, namely the inertial, gravitational, and frictional effects it imposes on the user. This paper describes the implementation of these two foundational elements (real-time gait phase detection and active cancellation of passive dynamics) on a prototype lower limb exoskeleton, and provides experimental data demonstrating their respective efficacy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call