Abstract

In this paper we give a survey of some models of the integer and fractional quantum Hall effect based on noncommutative geometry. We begin by recalling some classical geometry of electrons in solids and the passage to noncommutative geometry produced by the presence of a magnetic field. We recall how one can obtain this way a single electron model of the integer quantum Hall effect. While in the case of the integer quantum Hall effect the underlying geometry is Euclidean, we then discuss a model of the fractional quantum Hall effect, which is based on hyperbolic geometry simulating the multi-electron interactions. We derive the fractional values of the Hall conductance as integer multiples of orbifold Euler characteristics. We compare the results with experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.