Abstract

Integer and fractional quantum Hall (QH) effects are studied in bilayer electron systems both theoretically and experimentally, especially, at ν=2 and 2/3. Due to the spin and layer degrees of freedom, the SU(4) symmetry underlies the integer QH states, where quantum coherence develops spontaneously and quasiparticles are coherent excitations. It is intriguing that a pair of skyrmions makes one quasiparticle at ν=2. In the fractional QH regime, on the other hand, the composite-fermion cyclotron gap competes with the Zeeman and tunneling gaps, bringing in new phases and excitations. At ν=2/3 our experimental data suggest that a quasiparticle is not a coherent excitation but simply a composite fermion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call