Abstract
AbstractWe synthesized CeO2 nanowires and nanocubes showing {110}+{100} and {100} surfaces predominantly, respectively, once the different surface energies play a crucial role in the behavior of Ce4+/Ce3+ reversibility. We found out that Pt/CeO2 nanowires presented more Ce3+ content, oxygen vacancies, and atomically dispersed Pt, indicating a stronger Pt−Ce interaction. In contrast, the Pt/CeO2 nanocubes presented a higher contribution of Ptδ+ species, suggesting a well‐controlled Pt particle size (∼1 nm) and significant interaction with ceria, with oxygen species more available at the surface. Thus, we suggest that the ceria‘s different surface energies may lead to different Pt distributions of species over the supports. H2‐reduction treatment led to changes in Pt structure that showed a better catalysis performance for the Pt/CeO2 nanowires essentially, supported by XPS and CO‐DRIFTS. Nevertheless, this step did not cause improved activity to the point of overcoming the nanocubes‐based catalyst, and the reasons were fully discussed. Herein, we propose that catalysts′ performance depends on a complex combination of several materials′ characteristics. These features may lead to different reaction pathways depending on the pre‐treatment of the samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.