Abstract
Most of the existing statistical disclosure control (SDC) standards, such as k-anonymity or l-diversity, were initially designed for static data. Therefore, they cannot be directly applied to stream data which is continuous, transient, and usually unbounded. Moreover, in streaming applications, there is a need to offer strong guarantees on the maximum allowed delay between incoming data and its corresponding anonymous output. In order to full-fill with these requirements, in this paper, we present a set of modifications to the most standard SDC methods, efficiently implemented within the Massive Online Analysis (MOA) stream mining framework. Besides, we have also developed a set of performance metrics to evaluate Information Loss and Disclosure Risk values continuously. Finally, we also show the efficiency of our new methods with a large set of experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.