Abstract

The presence of terms that violate quark-hadron duality in the expansion of QCD Green's functions is a generally accepted fact. Recently, a new approach was proposed for the study of duality violations (DVs), which exploits the existence of a rigorous lower bound on the functional distance, measured in a certain norm, between a "true" correlator and its approximant calculated theoretically along a contour in the complex energy plane. In the present paper we pursue the investigation of functional-analysis based tests towards their application to real spectral function data. We derive a closed analytic expression for the minimal functional distance based on the general weighted $L^2$ norm and discuss its relation with the distance measured in $L^\infty$ norm. Using fake data sets obtained from a realistic toy model in which we allow for covariances inspired from the publicly available ALEPH spectral functions, we obtain by Monte Carlo simulations the statistical distribution of the strength parameter that measures the magnitude of the DV term added to the usual operator product expansion (OPE). The results show that, if the region with large errors near the end-point of the spectrum in $\tau$ decays is excluded, the functional-analysis based tests using either $L^2$ or $L^\infty$ norms are able to detect, in a statistically significant way, the presence of DVs in realistic spectral function pseudodata.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.