Abstract

A Kuratowski topology is a topology specified in terms of closed sets rather than open sets. Recently, the binary metric was introduced as a symmetric, distributive-lattice-ordered magma-valued function of two variables satisfying a “triangle inequality” and subsequently proved that every Kuratowski topology can be induced by such a binary metric. In this paper, we define the strong convergence of a sequence in a binary metric space and prove that strong convergence implies convergence. We state the conditions under which strong convergence is equivalent to convergence. We define a strongly Cauchy sequence and a strong complete binary metric space. Finally, we give the strong completion of all binary metric spaces with a countable indexing set.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call