Abstract
Soil erosion is a major cause of damage to agricultural lands in many parts of the world and is of particular concern in semiarid parts of Iran. We use five machine learning techniques—Random Forest (RF), M5P, Reduced Error Pruning Tree (REPTree), Gaussian Processes (GP), and Pace Regression (PR)—under two scenarios to predict soil erodibility in the Dehgolan region, Kurdistan Province, Iran. Our models are based on a variety of soil properties, including soil texture, structure, permeability, bulk density, aggregates, organic matter, and chemical constituents. We checked the validity of the models with statistical metrics, including the coefficient of determination (R2), mean absolute error (MAE), root mean squared error (RMSE), T-tests, Taylor diagrams, and box plots. All five algorithms show a positive correlation between the soil erodibility factor (K) and silt, sand, fine sand, bulk density, and infiltration. The GP model has the highest prediction accuracy (R2 = 0.843, MAE = 0.0044, RMSE = 0.0050). It outperformed the RF (R2 = 0.812, MAE = 0.0050, RMSE = 0.0061), PR, (R2 = 0.794, MAE = 0.0037, RMSE = 0.0052), M5P (R2 = 0.781, MAE = 0.0043, RMSE = 0.0053), and REPTree (R2 = 0.752, MAE = 0.0045, RMSE = 0.0056) algorithms and thus is a useful complement to studies aimed at predicting soil erodibility in areas with similar climate and soil characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.