Abstract

The phase diagram of strong interactions in nature at finite temperature and chemical potential remains largely theoretically unexplored due to inadequacy of Monte-Carlo-based computational techniques in overcoming a sign problem. Quantum computing offers a sign-problem-free approach, but evaluating thermal expectation values is generally resource intensive on quantum computers. To facilitate thermodynamic studies of gauge theories, we propose a generalization of the thermal-pure-quantum-state formulation of statistical mechanics applied to constrained gauge-theory dynamics, and numerically demonstrate that the phase diagram of a simple low-dimensional gauge theory is robustly determined using this approach, including mapping a chiral phase transition in the model at finite temperature and chemical potential. Quantum algorithms, resource requirements, and algorithmic and hardware error analysis are further discussed to motivate future implementations. Thermal pure quantum states, therefore, may present a suitable candidate for efficient thermal simulations of gauge theories in the era of quantum computing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.