Abstract

Aiming at evading the notorious sign problem in classical Monte-Carlo approaches to lattice quantum chromodynamics, we present an approach for quantum computing finite-temperature lattice gauge theories at non-zero density. Based on the thermal pure-quantum-state formalism of statistical mechanics when extended to gauge-theory systems, our approach allows for sign-problem-free quantum computations of thermal expectation values and non-equal time correlation functions. By taking a simple lattice gauge theory for which classical benchmarks are possible, namely $\mathbb{Z}_2$ lattice gauge theory in 1+1 dimensions at finite chemical potential, we discuss resource requirements and robustness to algorithmic and hardware imperfections for near-term quantum-hardware realizations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.